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Purpose. The purpose of this study was to explore a potential mecha-
nism of eye irritation, and to construct a corresponding general quantita-
tive structure-activity relationship (QSAR) model, in terms of diversity
of irritant chemical structure, based on the Draize eye irritation
ECETOC data set.

Methods. Molecular dynamic simulation (MDS) was used to generate
intermolecular membrane-solute interaction properties. These intermo-
lecular properties were combined with intramolecular physicochemical
properties and features of the solute (irritant) to construct QSAR models
using multi-dimensional linear regression and the Genetic Function
Approximation (GFA) algorithm.

Results. Significant QSAR models for estimating eye irritation poten-
tial were constructed in which solute aqueous solvation free energy
and solute-membrane interaction energies are the principle correlation
descriptors. These physicochemical descriptors were selected from a
trial set of 95 descriptors for 18 structurally diverse compounds fully
representative of the ECETOC set of 38 compounds.

Conclusions. Combining intermolecular solute-membrane interaction
descriptors with intramolecular solute descriptors yields statistically
significant eye irritation QSAR models. The resultant QSAR models
support an eye irritation mechanism of the action in which increased
aqueous solubility of the irritant and its strength of binding to the
membrane both increase eye irritation.

KEY WORDS: molecular dynamics simulations; molar adjusted eye
scores; partial least-squares regression; genetic function approximation;
quantitative structure-activity relationship.

INTRODUCTION

Eye irritation potency has traditionally being scored using
the Draize rabbit eye test (1). Other experimental approaches,
such as the use of histology, modern methods of pathology and
cell culture, have also been successfully employed in assessing
ocular toxicity. The computational study reported here explores
the possibility of estimating eye irritation potency for chemicals
of reasonably diverse structures without using animals. A subset
of the “standard” data set for eye irritation potency established
by the European Center for Ecotoxicology & Toxicology of
Chemicals (ECETOC) (2), see Table 1, was used in this study.
Recently Abraham and coworkers (3) have also suggested a
predictive eye irritation model from the ECETOC data set based
upon concentration corrections for irritant liquid vapor pressure,
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and descriptors reflecting among other features acidity and
basicity of the irritant.

The quantitative structure-activity relationship (QSAR)
paradigm, using intramolecular physicochemical descriptors,
has been used to predict several toxicological endpoints (4).
We first tried this approach by correlating intramolecular physi-
cochemical properties of the molecules in the ECETOC data
set with the corresponding reported eye irritation scores in the
hope of discovering a significant QSAR model. Like all other
QSAR studies on this data set only using intramolecular descrip-
tors, see references 3 and 5 and discussions and references
therein, our analysis was not successful in generating a signifi-
cant statistical QSAR model. It subsequently occurred to us
that “traditional” QSAR modeling does, in fact, only consider
intramolecular features of the molecules in training set such as
lipophilicity, dipole moment, molecular volume etc. In princi-
ple, progress might be made in the QSAR analysis of any
chemically diverse data set, such as the ECETOC eye irritation
data set, if the biochemical mechanism of action and/or “recep-
tor” were known and could be included in constructing the
QSARs.

In the case of eye irmitation, uptake and diffusion into the
keratocytes comprising the outer seven or so layers of the
corneal epithelium of the eye is a significant event. At the
corresponding molecular level eye irritation may involve trans-
fer to, and penetration into, corresponding cellular membranes
of the keratocytes. We have thus hypothesized that interactions
of test organic molecules with a cell membrane are, at least,
partly responsible for eye irritation. Moreover, the phospholipid
regions of a membrane bilayer of the cell might contain “general
binding sites” at least, in part, responsible for eye irritation.
Thus, we decided to include simulations of the uptake and
interaction of the compounds from ECETOC subset (the sol-
utes) with model monolayer membranes as part of our QSAR
analysis. The estimated membrane-solute interaction properties
from the simulations were added to the intramolecular solute
physicochemical property descriptors to provide an extended
set of trial descriptors for building eye irritation QSAR models.
This overall methodology is called membrane-interaction
QOSAR analysis, (MI-QSAR analysis).

MATERIALS AND METHODS

Eye Irritation Potency and the Training Set

Eye irritation potency dependent variables are the molar
adjusted eye scores from the Draize Rabbit Eye Irritation Test.
These scores were determined as follows: The molarity of the
solution was calculated using molarity = (density X 1000)/
relative molecular mass. Density values were obtained from a
standard source (6). Molar adjusted eye scores were then calcu-
lated as the raw eye irritation scores divided by the molarity
of the solution. The values of molar adjusted eye scores (MES)
for the compounds in data set are given in Table I. There is a
considerable concern that the MES values lack sufficient quality
and reproducibility to justify usage in constructing QSAR mod-
els. An analysis of the raw MES data, involving the use of
multiple experiments (animals) for a single test compound,
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Table I. The ECETOC Draize Eye Irritation Training and Test Subset Used in this Study Along with MI-QSAR (Eqs. 11-13) Descriptor
Values for Each Solute Molecule

Solutes F(H20) E(chg + vdw) E(chg) Kappa-3-AM Molar adjusted eye score (MES)
Training set
Hydrocarbons
3 Methyl hexane 2.75 -17.31 —13.22 3.84 0.10
2 Methyl pentane 2.54 —16.22 —12.15 5.33 0.26
Methylcyclopentane 1.36 -7 —-10.69 0.98 0.41
*1,9—Decadiene 1.64 —-14.36 —13.16 8.63 0.37
*Dodecane 3.62 —24.48 —23.65 11.11 0.45
1,5-hexadiene 0.83 -9.04 —10.49 4.88 0.55
Aromatic
4-fluoroaniline ~-13.68 —4.04 —-10.54 1.29 6.62
*Xylene —0.85 —-12.83 —-12.13 1.35 1.10
Toluene —0.93 ~4.58 —-5.38 1.04 0.96
Styrene -1.53 -9.65 -935 1.21 0.77
1-Methyipropylbenzene —-0.26 -5.36 -5 1.86 0.31
Ketones
Methyl amyl ketone 1.75 —9.47 —13.12 6.88 226
Methyl isobutyl ketone 1.8 -3.92 —3.41 2.37 0.59
Acetone 0.94 —2.06 —1.46 0.00 4.83
Alcohols
n-Butanol —7.45 -18.37 —8.64 3.96 5.47
Isopropanol —17.51 —1.69 —5.63 0.00 2.34
Propylene glycol —16.95 —15.04 —791 3.92 0.10
Butyl cellsolve —11.01 —-18.3 ~18.45 7.12 8.99
*Cyclohexanol —8.08 -10.74 —11.5 1.48 8.29
Acetates
Ethyl acetate —2.82 6.59 —1L17 5.01 1.47
Methyl acetate —3.02 —-15.79 —8.97 3.63 3.14
Methyl trimethyl acetate —2.16 -3.31 ~4.88 2.52 0.36
*Ethyl-2-methyl acetoacetate —2.92 -5.59 1.18 6.30 2.55
Test set
1,9-Decadiene 1.64 —14.36 —13.16 8.63 0.37 0.94 (p)
Dodecane 3.62 —24.48 -23.65 11.11 0.45 1.24 (p)
Xylene —0.85 —12.83 —12.13 1.35 1.10 1.89 (p)
Ethyl-2-methyl acetoacetate —2.92 -5.59 1.18 6.30 2.55 1.98 (p)
Cyclohexanol -8.08 —-10.74 —-11.5 1.48 8.29 4.98 (p)

* Solute molecules used in test set, (p) predicted MES values using eq. 11

eye irritation measures (small standard deviations) while strong
eye irritants have large standard deviations in their eye irritation
measures. Thus, highly irritating compounds are reproducibly
measured to be irritants, but the extent of high irritation varies
among animals. This translates into QSAR models that are
reliable except, perhaps, in predicting how highly irritating a
predicted high eye irritant might be. The 18 compounds in
Table I are a subset of the 38 compounds in the ECETOC eye
irritation data set for which MES values can be obtained. The
18 compounds in our training set were chosen to test the simpli-
fying assumption that if a model can explain the behavior of
any representative subset of compounds of a data set, the model
can explain the behavior of all compounds of the data set and
“equivalent” compounds outside the data set. The 18 training
set compounds and the five test compounds (not in the training
set) of Table 1 were selected according to the following criteria
to achieve a composite representative subset; a) Span the entire
range in eye irritation potency for the composite ECETOC data
set. b) Include representative chemical structures from each of
the analog subsets composing the composite ECETOC set. ¢)
Span the range of eye irritation potency within each analog

subset. “Charged” molecules were not included in the training
set because it is not clear if they are actually charged when at,
or in, the membrane. Both neutral and charged forms of an
ionizable compound could be considered in this approach, but
was not done in this initial application of MI-QSAR analysis.
The goal of this work was to apply and evaluate the MI-QSAR
method on a data set, which would permit us to analyze and
explore the results and findings of the analysis.

Building Solute Molecules and the DMPC Monolayer

The solute molecules, see Table I, were built using the
Chemlab-II (7) molecular modeling package. A single dimyris-
toylphosphatidylcholine (DMPC) molecule was built in Hyper-
Chem (8) using available crystal structure data (9). Partial
atomic charges were assigned to solute molecules, and the
DMPC molecule, using semi-empirical molecular orbital calcu-
lations. The AM1 Hamaltonian in Mopac 6.0 (10) was used
for the partial atomic charge estimation.

The DMPC molecule was selected as the model phospho-
lipid in this study. The structure of a DMPC molecule is shown
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in Fig 1. An assembly of 16 DMPC molecules (4*4*1) in (x,
y, z) directions, respectively, was used as a model membrane
monolayer. The size of the monolayer simulation system was
selected based on the work done by van der Ploeg and Berendsen
(11). Other researchers have obtained similar geometric and
energetic equilibrium property values with regard to the size
of the simulation system (12) permitting a minimum effective
size (phospholipids) of the monolayer to be defined.

The unit cell parameters used for building the DMPC
monolayer were a = 8 A,b =8 A, c = 32 A and y = 96.0°.
These unit cell parameters yield an average surface area per
phospholipid of 64 A% The experimental reported value for
average surface areca per phospholipid is 66 A? for a fully
hydrated fluid lamellar (La) phase of DMPC (12). An alternate
initial set of a and b unit cell parameters (a = 85 A, b = 8.5
A), corresponding to surface area per phospholipid of 72.3 A2,
was used to optimize the DMPC monolayer structure without
any solute present. The resulting optimized structure is virtually
identical to that found using the “standard”a = 8 Aand b =
8 A. dimensions. Both initial trial unit cell parameter sets opti-
mize to (a = 8.15 A, b = 820 A, c = 32 A,y = 94.5%).

Each of the test solute molecules of the data set was
inserted at three different positions (depths) in the DMPC mono-
layer with the most polar group of the solute molecule “facing”
toward the head group region of the monolayer. Three corres-
ponding MDS models were generated for each solute molecule
with regard to the trial positions of the solute molecule in the
monolayer. The three trial positions were,

1. Solute molecule in the head group region.

2. Solute molecule in between the headgroup region and
the aliphatic chains.

3. Solute molecule in the tail region of the aliphatic chains.

The energetically favorable geometry of the solute mole-
cule in the monolayer was sought using each of these trial
positions. The three different positions of isopropanol (one of
the test solute molecules) are shown in Fig. 2 (top) to illustrate
this modeling procedure. The energetically most favorable
geometry of butyl cellosolve (the solute molecule having high-
est MES value) is shown in Fig. 2 (bottom).

Molecular Dynamic Simulation

MDS was carried out using Molsim (14) with an extended
MM2 force field. The selection of the simulation temperature
was based on the phase transition temperature for DMPC which
is 297°K (15). A simulation temperature of 311°K was selected
since it is body temperature and is also above the DMPC
phase transition temperature. Simulation temperature was held
constant by coupling the system to an external constant tempera-
ture bath (16). The trajectory step size was 0.001 ps with a total
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simulation time of 20 ps. Two dimensional periodic boundary
conditions were employed (a = 32 A,b =32 A,c =80 A
and v = 96.0% for the DMPC molecules of the monolayer
model, but not the test solute molecule. Only a single solute
molecule is explicitly considered in each MDS. The angle vy is
the angle an extended DMPC molecule makes with the “planar
surface” of the monolayer.

The model monolayer, without a solute molecule, was
slowly heated starting at 20°K, then at 50°K, and from that
point in increments of 50°K until a final step was used to
achieve the simulation temperature of 311°K. At each tempera-
ture increment, 4 ps of MDS was carried out to allow for
structural relaxation and the distribution of the kinetic energy
throughout the simulation model. When 311°K was reached,
50 ps of MDS was performed to equilibrate the monolayer.

In order to prevent unfavorable van der Waals interactions
between a solute molecule and the membrane DMPC molecules,
one of the “center” DMPC molecules was removed from the
equilibrated monolayer and a test solute molecule inserted in
the space created by the missing DMPC molecule. Each of
the solute molecules was placed at each of the three different
positions in the monolayer described above with the polar por-
tion of the solute “facing” towards the headgroup region. The
same heating steps used to equilibrate the isolated monolayer
were carried out with solute present. However, only a final 20
ps production run was carried out at 311°K. The MDS scheme
for equilibration and exploration simulation is shown in Fig. 3.

Calculation of Descriptors

Both intramolecular physicochemical properties of the sol-
ute molecules and intermolecular solute-membrane interaction
properties were calculated. “Properties” will be referred to as
descriptors from this point forward as they constitute the inde-
pendent variables in the QSAR models. The intramolecular
descriptors that were considered are given in Table Il. Log P,
the water, 1-octanol partition coefficient, is an intermolecular
physicochemical property. However, Log P has been computed
using a group additive approach (17) which estimates this prop-
erty as an intramolecular descriptor. Thus, Log P is placed in
Table H. F(H,0) and F(OCT), the aqueous and 1-octanol solva-
tion free encrgies, respectively, are also intermolecular proper-
ties, and have been computed using an intermolecular method,
a hydration shell model (7). Consequently, these properties are
considered intermolecular descriptors and reported in Table II.

Some of the solute-membrane interaction descriptors
extracted directly from the MDS trajectories are given in Table
[I. These intermolecular descriptors were calculated using the
most stable (lowest total potential energy) solute-membrane
geometry from the three positions sampled for each of the
solutes. For example, Fig. 2b shows the lowest potential energy

o o o
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Fig. 1. The chemical structure of a DMPC molecule.
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Head group region

Middle region

Tail region

Solute

Fig. 2. (top) A “side” view of an isopropanol molecule inserted at three different positions in the DMPC
model monolayer, prior to the start of each simulation; and (bottom) “side” view of the most energetically
favorable geometry of butyl cellosolve (the solute having the highest MES value) in the DMPC model

monolayer.

DMPC MONOLAYER

20—50—100—150—200—250—300—311—311, — 7
I P Y S PO S

L Solute inserted at three positions ] -

L T

I Solute membrane i ion descriptors ]

Fig. 3. The schedule of performing a membrane-solute MDS. See text
for details.

state of butyl cellosolve in the membrane monolayer which
was used to estimate the solute-membrane interaction descrip-
tors. The remainder of the solute-membrane interaction descrip-
tors used in the QSAR descriptor trial set were determined
using data from the MDS trajectories.

D (Diffusion Coefficient of the Solute in the Membrane)

A diffusion coefficient can be calculated by (1) the mean-
square displacement method or (2) by the force auto-correlation
method. In this study the mean-square displacement method
(18) was used.

From the MDS trajectory, each movement Ad, of the solute
molecule between two adjacent time steps was determined in
the MDS. The mean-square displacement is correspondingly
defined as,
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Table II. Solute Descriptors Considered in the Trial QSAR Descriptor Set

Intramolecular Descriptors

Source

Log P (Logarithm of the partition coefficient) ¢
HOMO (Highest occupied molecular orbital energy) @
LUMO (Lowest occupied molecular orbital energy) @

Dipole moment

Molecular Volume

SA (Molecular surface area)
Density

Molecular weight

Molecular refractivity

Number of hydrogen bond acceptors
Number of hydrogen bond donors
Number of rotatable bonds

b

<

Jurs- Stanton CSPA (charged partial surface area) descriptors “

Kappa descriptors (topological descriptors)
Radius of Gyration
PM (Principie moment of inertia)

Symbol

Descriptions of the Intermolecular Descriptors

D Diffusion coefficient (cm?/sec).

(@

Average depth of solute in membrane (A®).

S Entropy of solute in the membrane (cal/mole/deg).

Dp
E(total)
Eimcr(lowl)

Change in membrane density upon uptake of a solute molecule (amu/A%).
Average total interaction energy of the solute and membrane (kcal/mole).
Interaction energy between the solute and the membrane at the total system minimum

potential energy (sum of electrostatic, H-bonding and vdw energies) (kcal/

mole).
E(chg)

Electrostatic interaction energy between the solute and the membrane at total system

minimum potential energy (kcal/mole).

E(vdw)

Van der Waals interaction energy between the solute and the membrane at the total

system minimun potential energy (kcal/mole).

E(chg + vdw)

Electrostatic plus van der Waals interaction energy between the solute and the

membrane at the total system minimum potential energy (kcal/mole).

F(H,O)
F(OCT)

The aqueous solvation free energy computed using a hydration shell model (7,31).
The 1-octanol solvation free energy computed using a hydration shell model (7,31).

“ Computed using Cerius2 (20).
b Calculated using MOPAC 6.0 (10).
¢ Calculated using Chemlab I1 (7).

Ad

s

[
t

X =

1
where n is the total number of time steps in MDS and t denotes
the total time of the MDS. From the Einstein diffusion equation
(19), the diffusion coefficient, D, is given by

—

p=%

2 2

S(Alignment and Conformational Entropy)

The alignment and conformational entropy, S, is calculated
directly from the partition function, Q, and the corresponding
thermodynamic probability of each state, P;. Q is assumed to
be well-represented by the states of the MDS.

Q ; exp(—Ei/RT) 3

exp(—E/RT)

4
Q @

§=-RY PnP (5)

i=1

R is the gas constant, E; is the total potential energy of the
i state (time step) of the MDS and T is the Kelvin temperature.

{d) (Average Depth of a Solute in a Membrane)

A “center” atom of the solute molecule and the closest
phosphate atom of the nearby (adjacent) phospholipid are
selected to define solute “depth” in the membrane. The distance,
d;, between these two atoms for each step i in the MDS trajectory
was computed as,

6

Again, P; is the thermodynamic probability [eq. (4)] of
the i* state (MDS time step). The average depth can be interpre-
ted as defining where the solute has the most favorable thermo-
dynamic interaction with the membrane monolayer model.
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dp(Change in Membrane Density Upon Uptake of the Solute)

The Cerius 2 (20) software was used to calculate the
Connolly volume of the model membrane assembly. The lowest
potential energy state for the isolated monolayer model, and a
spherical probe with a radius of 1.2 A% was used in calculating
the Connolly volume. The Connolly volumes were also deter-
mined for each of the solute-membrane systems, again using
the lowest potential energy states. The change in density, dp,
due to each solute was then calculated as,

Mmem S0 M m
dp=<( +I))_((me)) %)

V(mem-H‘oI) v(mem)

Mmemy is the mass of the isolated model membrane without
the solute, M(mem+sop 1S the mass of the membrane model with
the solute and V ey and V mem 4501y are the corresponding Con-
nolly volumes, respectively.

Construction and Testing of QSAR Models

QSAR models were constructed using the Genetic Func-
tion Approximation, GFA, (21) which is a method based on
the genetic algorithm paradigm. The GFA algorithm is coded
in the program WOLF (22). Statistical significance of a
QSAR model is based on Friedman’s lack of fit (LOF) mea-
sure (23). The LOF measure is designed to resist overfitting
which is a problem often encountered in constructing statisti-
cal models.

Optimization of a QSAR model was considered to be
realized when descriptor usage became constant and indepen-
dent of increasing crossover operations. A Crossover operation
is the “birth” of a child model from its parent models. Both
partial least-squares regression (PLS) and multi-dimensional
linear regression (MLR) can be used in WOLF to establish
functional data fits. MLR was used in this study.

In order to test and validate the MI-QSAR models, the
dependent variable, MES, was randomly “scrambled” with
respect to the independent variables (descriptor set) to see if
meaningful correlations (QSARs) could be found (24) for the
scrambled data sets. The loss of any significant correlation for
each of the scrambled data sets is taken as evidence of the
significance of the QSAR for the nonscrambled data set. The
covariance among the descriptors in the optimized MI-QSAR
models was evaluated by constructing the linear cross-correla-
tion matrix of the descriptors, and by comparing relative
descriptor usage in the crossover plots.

RESULTS

QSAR Analysis Using Intramolecular Physicochemical
Descriptors

The best three QSAR models constructed by correlating
MES only with the intramolecular solute descriptors are as
follows:

MES = 31.59 + 2.31 * HOMO
n=18 12 =029; xv — 2 = 0.16;
LSE = 2.89; LOF = 3.51 8)

Kulkarni and Hopfinger

MES = 10.78 + 0.076 * PM(Z) — 0.09 * SA

n =182 = 0.42; xv — 2 = 0.29;
LSE = 2.37; LOF = 3.59 9
MES =282 — 0.56 * Log P

n=18r =0.19; xv — 2 = 0.09;

LSE = 3.30; LOF = 4.02 (10)

The intramolecular solute descriptors in the QSAR models
above (eqs. 8—10) are defined in Table II. Log P has often been
found to be a significant correlation descriptor to biological
activities when used in quadratic form (log P and (log P)?)
(25). Consequently Log P was considered in both linear and
square forms in the trial set of QSAR descriptors in the intramo-
lecular QSAR analysis and in the MI-QSAR analysis. However,
no significant QSAR model could be constructed which
included a (Log P)? term.

A QSAR model is usually considered significant if it has
a correlation coefficient (r?) greater than 0.7. None of the QSAR
models above has an r? value greater than 0.5. Similar QSAR
models, in terms of 12 values, have been reported by Comin,
Basketter & York (26). These workers also report HOMO and
LogP as important descriptors in their models. For both the
intramolecular QSAR models reported in eqs. (8)—-(10), as well
as those of other workers, the descriptors found in the models
can be used to speculate mechanisms of action. However, the
correlation coefficients of all intramolecular MES QSAR mod-
els are so low that no plausible conclusion can be made regard-
ing a biochemical mechanism of eye irritation.

QSAR Analysis Including Intermolecular Solute-
Membrane Interaction Descriptors

Visual inspections of the MDS were done using the MOL-
SIM visualization tool MDMOVIE. It was observed that polar
molecules, like alcohols and ketones, prefer to stay in the head
group region of the membrane monolayer. Conversely, lipo-
philic molecules, like the hydrocarbons, locate in the tail region
of the monolayer. Some of the solute molecules behave in
distinct fashions. For example, toluene perfers a position “paral-
lel” to the monolayer “plane”, as the most stable intermolecu-
lar geometry.

Diffusion coefficients calculated for the ECETOC solutes
are in the range of 107¢ to 1077 cm?sec, which is consistent
with reported experimental values for organics (1075 to 107
cm?sec) in lipid membranes (27). The experimental value of the
diffusion coefficient for propanol in a phospholipid membrane is
7.88 X 1077 cm?/sec (27). The diffusion coefficient for propanol
was determined using the MDS scheme (see Fig. 3) for MI-
QSAR analysis. The average value computed for the diffusion
coefficient is 1.20 X 1077 cm%sec. Thus, the MDS scheme
used in this study would seem to be reasonable with respect
to diffusion of the solute in the model DMPC monolayer.

Permeation and solubility coefficients have not been esti-
mated, but the information they may provide to an MI-QSAR
model should be captured among the diffusion coefficient,
F(H,0), F(OCT), log P and the membrane-interaction energy
descriptors used in the trial MI-QSAR descriptor set.

The estimated average “depth” of a solute in the membrane
exhibits a large variability over the ECETOC data set, ranging
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from 5.5 to 14.5A. There is very little change in the conforma-
tional entropy of the membrane model upon uptake of solute
molecules. This is likely due to the low “concentration” of solute
molecules in the model (Isolute per 15 DMPC molecules).
Also, only small changes in monolayer density are seen upon
solute uptake.

The most striking feature that could be discerned in the
solute-membrane MDS modeling was the large variation in the
interaction energies for the different solute molecules with the
model monolayer. These variations in solute-membrane interac-
tion energy can be related to size, shape, partial atomic charge
distribution and net polarity of the solute. Location of the solute
in the monolayer also impacts the interaction energetics.

The solute-membrane properties are not particularly sensi-
tive to small (*10°K) changes in the simulation temperature.
More generally, considerable work was done to develop the
MI modeling method by Jin and Hopfinger (28-30) prior to
the undertaking of this eye irritation MI-QSAR study. Jin and
Hopfinger compared, for example, the computed order parame-
ters and the trans/gauche ratios of the aliphatic chains of the
DMPC monolayer to experimental values to validate the MDS
membrane-solute interaction methodology.

Overall, the solute-membrane MDS seem to yield realistic,
low energy, portrayals of this class of intermolecular interac-
tions as judged by the analysis of a variety of properties of the
model system as described above. Thus, the solute-membrane
interaction physicochemical properties were included as mem-
bers of the trial set of QSAR descriptors to construct a MES
QSAR model. The best QSAR models obtained using the GFA
algorithm are:

MES = -0.03 — 0.46 * F(H,0) — 0.12 * E(chg + vdw)
n = 16; r* = 0.87; xv — 2 = 0.80;

LSE = 0.83; LOF = 2.10 (11)
MES = —0.81 — 0.07 * E(chg + vdw)
— 048 * F(H,0) + 0.35 * Kappa-3-AM
n=16;r* = 092; xv — rZ = 0.88;
LSE = 0.41; LOF = 1.94 (12)
MES = —1.06 — 0.23 * E(chg) — 0.43 * F(H,0)
n = 16; > = 0.87; xv — r* = 0.76;
LSE = 0.82; LOF = 2.02 (13)

The independent variables (descriptors) in eqs. (11)—(13)
are defined in Table 11. Kappa-3-AM is a molecular connectivity
descriptor (20) and reflects the size and shape of a molecule.
The linear cross-correlation matrix for the descriptors in eqs.
(11-13) and MES is presented in Table III. The scrambling
experiments to test the validity of egs. (11-13) led to models
with R? < 0.3. These low R? values of the scrambling experi-
ments suggest that egs. (11-13) are significant MI-QSAR mod-
els and not the result of random correlations.

There are two outliers in the ECETOC data subset for all
three of the membrane-interaction QSAR models given by eqs.
(11)-(13). The predicted MES value of propylene glycol is
significantly larger than is reported. Interestingly, propylene
glycol is also an outlier in the model developed by Abraham
and coworkers (3). The other outlier, acetone, can be marginally
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Table III. The Linear Cross-Correlation Matrix for the MES and the
MI-QSAR Descriptors in Eqs. (11-13)

Kappa-3-
MES F(H20) E(chg + vdw) E(chg) AM
MES 1
F(H20) -0.87 1
E(chg + vdw) —-0.32 -0.01 1
E(chg) -0.49 0.18 0.50 1
Kappa-3-AM 0.30 0.09 —0.43 —-0.71 |

included in the modeling, and leads to a model with the same
descriptors as in eq. (11), but with a lower r? value. The best
MI-QSAR model with acetone included is,

MES = 0.68 — 0.42* F(H,O) ~ 0.091 * E(chg + vdw)
n=17;2 = 0.75; xv — 2 = 0.65;
LSE = 1.61; LOF = 3.73 (14)

F(H,0) is the dominant single descriptor in relation to the
MES values, and its individual MES QSAR model, excluding
acetone and propylene glycol, is,

MES = 1.02 — 0.46 * F(H,0)
16; 12 = 0.76; xv — 12 = 0.64;
1.51; LOF = 2.43

n

LSE

(15)

A comparison of eq. (15) to egs. (11)—(13) reveals that
the regression coefficients for F(H,O) are all nearly the same
(0.43 to 0.48). This, in tum, indicates that the contribution to
“explaining” the variation in MES by F(H,0) in eq. (15) is the
same as in eqgs. {11)—(13). Thus, while F(H,O) is statistically the
dominant descriptor, E(chg + vdw) of eqs. (11)—(12), kappa-3-
AM of eq. (12), and E(chg) of eq. (13) are each making separate
(from F(H,0)), and significant, contributions to explaining the
variation in the MES of the training set.

DISCUSSION

Significant MES QSAR models were obtained for the
structurally diverse subset of the ECETOC database by combin-
ing intramolecular physicochemical properties with intermolec-
ular solute-membrane interaction properties. The most
important type of descriptors used in the QSAR models are
solute-membrane interaction energies and aqueous solvation
free energies of the solute molecules. No statistically compre-
hensive QSAR model could be constructed unless both types
of descriptors were employed in the trial descriptor set.

Aqueous solvation free energies were computed using a
hydration shell model (31). Strictly speaking this is an intramo-
lecular method of calculation, and the corresponding F(H,0)
descriptor could be classified as an intramolecular property.
However, aqueous solvation free energy is an intermolecular
thermodynamic property arising from interactions between a
solute molecule and the water molecules in which it is “embed-
ded”. Moreover, intermolecular simulations may be used to
estimate F(H,0), although the computational time and effort
to do so is substantially greater than the empirical hydration
shell approach. Thus, we opted to estimate F(H,O) using the
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hydration shell model, but classify this descriptor as an intermo-
lecular property.

Increasingly negative F(H,0) values correspond to
increasing aqueous solubility of a solute. In egs. (11)—(13) it
is seen that aqueous solvation free energy is negatively corre-
lated with MES. This relationship suggests that water soluble
compounds have a greater propensity to be eye irritants than
hydrophobic compounds. The solute-membrane energy interac-
tion descriptors in eqs. (11)—(13) are also negatively correlated
with the MES. Thus, as the “binding energy” of a solute mole-
cule to the membrane increases (a more negative descriptor
value), it is going to be more of an eye irritant than solutes
which do not bind as strongly to the membrane.

Combining the interpretations of the two types of descrip-
tors in eqs. (11)-(13), leads to the following “picture”. If a
solute molecule is water soluble it possesses some polar moie-
ties. These polar groups can also have favorable binding interac-
tions with a membrane, probably involving the head group
region. Polar alcohols are known to disturb membrane structure
(32) which is consistent with this picture. The MES QSAR
models given by eqs. (11-13) and (15) suggest that the eye
irritation potency of a solute molecule, as measured by the
Draize test, is mainly due to the aqueous solubility of the solute.

The significance of F(H,0) in the proposed model for eye
irritation gleaned from the MES QSAR models prompted an inde-
pendent assessment of the reliability of the F(H,O) calculated
values. This assessment consisted of correlating the calculated
aqueous solvation free energies [F(H,0)] of some of the solutes
in the QSAR data subset with their respective experimental solubili-
ties. Due to a lack of experimental solubility data for all of the
solute molecules in the data subset, representative solute molecules,
whose experimental solubility values are available, were selected
for the particular chemical classes of the data subset. A reasonable
correlation was established between calculated F(H,0O) values and
experimental solubility measures for the 20 solute molecules listed
in Table IV. The correlation equation is,

Solubility = 1.53 * F(H,0) — 5.33
n = 20; r* = 0.68

(16)

There are four outliers using eq. (16). These outliers proba-
bly arise because in the hydration shell calculation of F(H,O)
dipole-dipole interactions between the solute and water are not
taken into consideration. Removal of the two largest outliers
(in bold in Table IV) results in the correlation given by eq.
(17), and removal of all four outliers yields eq. (18).

Solubility = 0.41 * F(H,0) — 2.71
n =181 = 08l (7)
Solubility = 0.40 * F(H,0) — 2.90 (18)
n=16;° =090

Table 1V also contains the experimental solubility values
(33), the calculated F(H,0O) values and the predicted solubilities,
using eq. (16), for the test set of solute molecules.

The solute-membrane interaction energy terms in egs.
(11)—(13) suggest that eye irritation potency increases with
increasing binding of the solute to the membrane. A straightfor-
ward interpretation of this type of descriptor term in egs. (11)—
(13) is that disruption of membrane structure and, likely,
function promotes eye irritation.

Kulkarni and Hopfinger

Table IV. Calculated F(H,0) and Experimental Solubility Values

Calculated Observed Predicted

Solutes F(H,0)  solubility solubility Residuals
3 Methyl hexane 2.75 447 4.29 0.18
2 Methyl pentane 2.54 3.79 4.20 —0.41
Methylcyclopentane 1.36 3.30 3.67 -0.37
Xylene —0.85 283 2.69 0.14
Toluene -0.93 222 2.66 —0.44
Styrene —1.53 2.58 2.39 0.19
Butanol —745 0.02 —-0.24 0.26
Isobutanol ~7.35 0.09 —0.20 0.28
Ethly acetate —2.82 0.02 1.82 —-1.79
Butylacetate —2.42 1.18 2.00 —0.82
Dodecane 3.17 7.67 4.48 3.19
Hexadiene 0.83 2.69 344 -0.75
Cyclohexanol —8.08 0.42 —-0.52 0.94
2 Ethyl lhexanol —6.49 2.1 0.19 1.92
Propanol —7.65 —0.62 -033 —-0.29
Propylbenzene —048 3.34 2385 0.49
Isobutylacetate —2.16 1.24 2.1 —0.87
[soproplyacetate —2.48 0.60 1.97 —1.37
Cyclooctane 1.62 4.15 3.79 0.36
Flourobenzene —0.94 1.79 2.65 —0.86

¢ Using eq. (16).

A generalized view of eye irritation as scored by the Draize
test can be made from the discussion above and eqs (11)—(13).
The F(H,0) descriptor reflects the availability of a solute molecule
to disrupt membrane structure. That is, F(H,O) is a solute concentra-
tion measure. The membrane-solute interaction energy descriptors
provide measures of the intrinsic membrane disrupting potencies
of each of the individual solute molecules. MES is thus controlled
by an effective solute concentration coupled to the intrinsic mem-
brane disruption propensity of the solute. This interpretation of
the MI-QSARs is similar to the model of Abraham and coworkers
(3) in terms of an effective solute concentration. Their model
identifies the significance of transferring the solute from its applica-
tion state (pure organic liquid or aqueous solution) to “an organic
biophase” (the biological structure of the eye). In other words, the
concentration of the solute in the “organic biophase” is crucial to
eye irritation potency.

It is also important to point out two of the biochemical
factors not considered in the MI-QSAR formalism. First, the
possible interactions of a solute with membrane proteins are
not considered. If this class of interactions is important to the
expression of eye irritation for a compound, MI-QSAR analysis
is not applicable and will fail. Secondly, at the current stage
of development of MI-QSAR analysis, cellular membrane spec-
ificity, in terms of specific phospholipids, has not been consid-
ered. The MI-QSAR models are based solely on DMPC
monolayer binding site models. However, there is no reason
that other phospholipid membrane models cannot be considered
in MI-QSAR analysis.

The membrane-interaction QSAR model given by eq. (11)
was used to predict MES of ECETOC molecules that were not
included in the training data subset during model development.
The prediction of MES for compounds outside the training set
constitutes a validation test of the QSAR model. Table I con-
tains, in addition to the training set, the predicted and reported
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experimental MES values for five compounds outside the origi-
nal training data subset. Four of the five test compounds in
Table | are well predicted by the QSAR model. Cyclohexanol
is predicted to have a much lower MES value, corresponding
to a 40% difference, than the reported value. Still, cyclohexanol
is predicted to be an eye irritant.

The successful treatment of a representative set of structur-
ally diverse compounds from the ECETOC eye irritation train-
ing set by including interactions of these compounds with
membrane models is both novel and important. However, we
do not wish to imply any specific single mechanism of action
from this QSAR analysis. We have only developed a model
consistent with the data. However, from a purely practical point
of view, membrane-interaction QSAR analysis, may be a break-
through method to reduce animal testing in several classes of
current risk assessment screens. Some application areas that
may involve membrane interactions in the biochemical mecha-
nisms and, therefore, which could be evaluated using mem-
brane-interaction QSAR analysis include:

1. Skin sensitivity and irritation.

2. Aquatic toxicity.

3. Membrane bound drug-receptor interactions.
4. General modeling of bioavailability.

In particular, there are some bioavailability measures, such
as Caco-2 cell permeation coefficients (34), which are directly
related to cell uptake and transport, and, therefore, well-suited
for study using MI-QSAR analysis. Additional work on mem-
branc-interaction QSAR analysis continues in our laboratory
with the hope of learning more about both the reliability and
general utility of the method.
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